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Abstract:

The aim of the present study was to investigate the role of GABAergic and nitriergic modulation in the antianxiety effect of thymo-

quinone, a major constituent of Nigella sativa, in mice under unstressed and stressed conditions. Thymoquinone (10 and 20 mg/kg),

methylene blue (1 mg/kg) and diazepam (2 mg/kg) were administered followed by behavioral testing using an elevated plus maze,

the light/dark test and the social interaction test in both unstressed and stressed mice (mice subjected to 6 h immobilization). The ef-

fects of the above-mentioned drugs on plasma nitrite, a stable metabolite of nitric oxide (NO) and brain GABA content were also

studied. Diazepam (2 mg/kg) produced significant anxiolytic-like effects only in unstressed mice. However, diazepam significantly

increased the GABA content in both unstressed and stressed mice as compared with their respective control groups. Thymoquinone

(10 and 20 mg/kg) produced significant antianxiety effects in unstressed mice without altering nitrite levels, but only the higher dose

(20 mg/kg) of thymoquinone increased the GABA content in unstressed mice. In stressed mice, thymoquinone (20 mg/kg) showed

anxiolytic effects, with a significant decrease in plasma nitrite and reversal of the decreased brain GABA content. Pre-treatment with

methylene blue enhanced the antianxiety effect of thymoquinone in both unstressed and stressed mice. Therefore, the present study

suggests an involvement of NO-cGMP and GABAergic pathways in the anxiolytic-like activity of thymoquinone.
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Introduction

Nitric oxide (NO), an intercellular messenger in the

brain generated from L-arginine by different isoforms

of nitric oxide synthase (nNOS, iNOS and eNOS),

plays an important role in various physiological and

pathological processes [20, 54]. Nitric oxide synthase

(NOS) is localized in brain regions involved with

anxiety, such as hypothalamus, amygdala and hippo-

campus [37, 38, 56]. Inhibition of NOS by N-nitro-L-

-arginine-methyl ester [13], 7-nitroindazole and 1-(2-

trifluoromethylphenyl)imidazole [58, 59] and S-ethyl-

isothiourea and aminoguanidine [18, 42) have been

reported to produce antianxiety activity in different

animal models of anxiety. L-arginine, the donor of

NO, is reported to prevent the antianxiety effect of

NOS inhibitors [15]. Acute stress induces a general-

660 �����������	��� 
����
�� ����� ��� �������

�����������	��� 
����
�

����� ��� �������

�		
 ����
����

��������� � ����

�� ��������� �� ���� �!�"���

��"��� #!�$� � �� 	!���!��



ized increase in the production of NO and causes anx-

ious behavior in rodents [48]. Stress induced by im-

mobilization of the rodents for 6 h has been observed

to significantly increase the expression of NOS in ro-

dents [17–19, 34, 35]. An abundance of NOS-containing

cells in the medial amygdala suggests equally signifi-

cant nitriergic influence on the processing of stress-

related responses in these structures [53]. NOS inhibi-

tion in the medial amygdala also produces anxiolytic-

like effects in the elevated plus maze [9]. Immobiliza-

tion stress in rats has been reported to significantly in-

crease plasma nitrite levels [32]. Similar short-term

(6 h) immobilization stress has also been found to in-

crease NO levels in mice in our laboratory [17–19].

GABA is the major inhibitory neurotransmitter in

the mammalian central nervous system [4]. GABA

pathways have a regulatory role in the modulation of

behavioral sequelae resulting from stress [49]. The

basolateral complex of the amygdala, an important

area for manifestation of anxiety, contains relatively

large numbers of benzodiazepine/GABA� receptors

[43], and infusion of benzodiazepines or GABA� ago-

nists in the basolateral amygdala reduced fear condi-

tioning and anxiety [28]. Short-term and prior stress

downregulate GABA pathways [24, 36]. Immobiliza-

tion stress induces rapid and persistent changes in the

GABA-benzodiazepine-barbiturate receptor complex

in animal brains [60]. Furthermore, GABA is reported

to attenuate stress-induced NO release, and stress con-

ditions known to release iNOS-mediated NO are re-

sponsible for dysregulation of GABA pathways [24].

cGMP downregulates GABA� receptor function in

hippocampus, an area involved in anxiety [47].

Thymoquinone, the major bioactive constituent of

seed oil of Nigella sativa, possesses various pharma-

cological activities, such as analgesic and anti-

inflammatory activity [1], protection against chemi-

cal-induced carcinogenesis [25], inhibition of eicosa-

noid generation and membrane lipid peroxidation

[27], neuroprotection [2], anticonvulsant activity [26]

and suppression of oxidative stress-induced neuropa-

thy [23]. At the molecular level, thymoquinone has

been shown to downregulate tumor necrosis factor

[11] and suppress nuclear factor kappa B (NF-�B) ac-

tivation in brain and spinal cord [39]. Thymoquinone

significantly suppressed the expression of iNOS [10].

Four weeks of daily administration of Nigella sativa

seed oil produced antianxiety effects in rats due to an

increase in brain serotonin levels [45]. There was par-

tial involvement of benzodiazepine receptors in the

antianxiety activity of thymoquinone. Non-benzo-

diazepine receptor blocking mechanisms were also

proposed to mediate the antianxiety activity of thymo-

quinone [46]. Involvement of NO or nitriergic modu-

lation has still not been explored in regard to the

antianxiety effect of thymoquinone.

The reported induction of iNOS by immobilization

stress, the observed inhibition of NF-�B, a transcrip-

tional activator of iNOS, by thymoquinone and the re-

versal of the antianxiety effect of thymoquinone by

flumazenil, a benzodiazepine receptor antagonist,

prompted us to explore the involvement of nitriergic

and GABAergic influences in the antianxiety effect of

thymoquinone under both unstressed and stressed

conditions. Therefore, the present study was designed

to explore possible nitriergic modulation in the anti-

anxiety effect of thymoquinone. Furthermore, taking

into consideration the variations in the neurochemical

levels of NO [18] and GABA [24] under conditions of

stress, the investigation was extended to explore the

interplay between GABA and NO in the observed ef-

fect of thymoquinone under both unstressed and

stressed conditions.

Materials and Methods

Animals

Male Swiss albino mice (20–25 g) were employed in

the present study. Animals were procured from the

Disease Free Small Animal House, CCS Haryana Ag-

ricultural University, Hisar, Haryana, India. Animals

were housed under laboratory conditions with an al-

ternating light and dark cycle of 12 h each in cages at

a controlled room temperature of 20–22°C. The ani-

mals were acclimatized to laboratory conditions be-

fore behavioral experiments. The experimental proto-

col was approved by the Institutional Animal Ethics

Committee and care of the animals was carried out in

compliance with the guidelines of the Committee for

the Purpose of Control and Supervision of Experi-

ments on Animals (CPCSEA), Ministry of Environ-

ment and Forests, Government of India (Registration

No. 0436).

�����������	��� 
����
�� ����� ��� ������� 661

Modulation of NO and GABA in antianxiety effect of thymoquinone
������ ���	
��� ��
 �����	 �	�����



Drugs

Thymoquinone, methylene blue (Sigma-Aldrich Chemi-

cal Co., St. Louis, MO, USA) and diazepam (Calm-

pose®; Ranbaxy Laboratories Ltd., India) were used

in the present study. Corn oil and normal saline were

used as vehicles for thymoquinone and methylene

blue, respectively. Diazepam injection was diluted in

normal saline [52].

Behavioral paradigms

Elevated plus maze

The plus maze apparatus consisted of two open arms

(without walls), 16 × 5 cm, and two enclosed arms,

16 × 5 × 12 cm, arranged opposite to each other.

The maze was elevated to a height of 25 cm. Each

mouse was placed individually at the center of the ele-

vated plus maze with its head facing towards an open

arm and observed for a period of 5 min [30, 44]. In the

elevated plus maze test, the percentage of time spent

in the open arms was determined as follows:

% = ×Number of seconds spent in open arms 100

300 total s (5 min observation time)

Light and dark test

The apparatus consisted of a rectangular box (45 × 27

× 27 cm), partitioned into two compartments connected

by a 7.5 × 7.5 cm opening in the wall between com-

partments. One compartment was painted black and

covered with a roof. The other compartment had no

roof and was brightly illuminated by a 60 W bulb lo-

cated above the box. An animal was placed in the center

of the light compartment and was observed for 5 min.

The time spent in the open (white/light) compartment

was recorded [7]. The percentage of time spent in the

light compartment was determined as follows:

% = Number of seconds spent in the light compartment 100

300 total s (5 min observation time)

×

Social interaction test

The social interaction arena was an open topped

box (22 × 15 × 12 cm). After introduction into the test

arena, mice were scored for the cumulative time spent

in genital investigation, sniffing a partner, climbing

over and under another conspecific, neck licking and

boxing [14].

% = ×Number of seconds spent in interaction 100

300 total s (5 min observation time)

Plasma nitrite estimation

For nitrite estimation, blood was withdrawn from the

tail vein of immobilized mice in all study groups im-

mediately before setting the animal free and subject-

ing it to behavioral tests [17–19]. Plasma was sepa-

rated by centrifugation (2500 rpm at 4°C) for 10 min.

It was stored in a refrigerator and processed for esti-

mation of nitrite content within 24 h. Plasma nitrite

was measured by a spectrophotometric assay based on

the Griess reaction [22].

Brain GABA estimation

Brain GABA content was estimated using the estab-

lished method of Lowe et al. [33]. Brains were rapidly

removed from mice after completing behavioral test-

ing, and isolated brains were weighed and transferred

to 5 ml of ice-cold trichloroacetic acid (10% w/v), ho-

mogenized and centrifuged at 10,000 × g for 10 min at

0°C. Then, 0.1 ml of tissue extract was added to 0.2 ml

of 0.15 M ninhydrin solution in a 0.5 M carbonate-

bicarbonate buffer (pH 9.95), which was incubated in

a water bath at 60°C for 30 min and then cooled and

treated with 5 ml of copper tartrate reagent (0.16% di-

sodium carbonate, 0.03% copper sulfate and 0.03%

tartaric acid). After 10 min, a fluorescence reading

was taken at excitation/emission wavelengths of

377/451 nm in a spectrofluorimeter (Shimadzu

RF-1501).

Locomotor activity

The effects of various treatments on spontaneous lo-

comotor activity of animals were measured using an

actophotometer (INCO, Ambala, India). The data are

presented as the number of counts recorded by the ap-

paratus as the light beam was interrupted between the

light source and photo sensors in response to animal

movements. The locomotor activity scores for each

animal were recorded for a period of 10 min before

and after drug treatment.
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Experimental protocol

Male Swiss albino mice (n = 6 mice per group) were

employed in the present study. Stress was produced

by immobilizing the mice for 6 h (8 a.m. – 2 p.m.) by

taping all four of their limbs and their trunk to

a wooden board [17–19]. Mice subjected to immobili-

zation were considered as stressed mice. Mice not

subjected to immobilization were considered as un-

stressed mice. All treatments (vehicle, 10 ml/kg; thy-

moquinone, 10 and 20 mg/kg; methylene blue, 1 mg/

kg) were administered intraperitoneally (ip) in a fixed

volume of 1 ml/100 g body weight in separate groups

of mice. Doses and routes of administration of drugs

were selected according to previous studies conducted

in our laboratory [17, 18] and as reported in the litera-

ture [47]. Unstressed mice received vehicle and drugs

30 min before testing them in various behavioral para-

digms. The remaining mice received vehicle and

drugs 30 min before subjecting them to immobiliza-

tion for 6 h [31]. When pre-treatment of methylene

blue was employed, methylene blue was administered

15 min before injection of thymoquinone. For nitrite

estimation, blood was withdrawn from the tail vein of

immobilized mice in all study groups immediately be-

fore setting the animals free and subjecting them to

behavioral tests. The sampling procedure was com-

pleted during immobilization of the mice to avoid the

extra stress that would be inflicted if the mice were

immobilized for a second time for the purpose of

drawing blood from the tail vein [17–19]. For GABA

estimations, animals were sacrificed by decapitation

after behavioral testing and their brains were re-

moved.

Statistical analysis

All results are expressed as the mean ± SE. All statisti-

cal analyses were performed using analysis of vari-

ance (ANOVA) followed by Tukey’s test with the aid

of the GraphPad InStat package, version 3.05; p <

0.05 was considered as significant.

Results

Effect of thymoquinone and methylene blue

on mouse behavior in various behavioral para-

digms (elevated plus maze, light/dark test,

social interaction test)

In the elevated plus maze, the light-dark test and so-

cial interaction test, respectively, a significant in-
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Sal IMMO DZP(U) TQ(U) TQ(S) TQ(U) TQ(S) MMBDZP(S)

Fig. 1. Effect of different treatments on time spent by mice in open arms of elevated plus maze. n = 6 in each group. Values expressed as the mean
± SEM. Data were analyzed by ANOVA followed by Tukey’s post-hoc test, F (12, 65) = 49.68; p < 0.0001, a = p < 0.05 significant difference from
vehicle-treated control group (unstressed mice), b = p < 0.05 significant difference from vehicle-treated control group (stressed mice), c = p <
0.05 significant difference from TQ (10 mg/kg)-treated unstressed mice, d = p < 0.05 significant difference from TQ (20 mg/kg)-treated
unstressed mice, e = p < 0.05 significant difference from TQ (20 mg/kg)-treated stressed mice. Sal: Normal saline; CO: Corn oil; IMMO: immobili-
zation; DZP(U): diazepam (unstressed); DZP(S): diazepam (stressed) TQ(U): thymoquinone (unstressed); TQ(S): thymoquinone (stressed); MB:
methylene blue. Doses mentioned are in mg/kg



crease in the time spent in the open arms and in the

number of open-arm entries, a significant increase in

the time spent in the light compartment, and a signifi-

cant increase in the time spent in social interactions

indicate an anxiolytic effect. Alternatively, a signifi-

cant decrease in the various parameters of these three

behavioral tests above indicates an anxiogenic effect.

Six hours of acute immobilization induced a sig-

nificant anxiogenic effect in unstressed mice as com-

pared with vehicle-treated unstressed mice. Corn oil

did not significantly affect the time spent in the open

arms, the light compartment or social interaction in

saline-treated unstressed mice. Diazepam produced

significant antianxiety effects in unstressed mice as

compared with the saline-treated group but did not ex-

ert a significant anxiolytic effect in stressed mice as

compared to immobilization-induced stressed mice.

Thymoquinone (10 mg/kg and 20 mg/kg) produced

significant anxiolytic activity in unstressed mice. In

stressed mice, only the higher dose (20 mg/kg) of thy-

moquinone produced a significant antianxiety effect.

Pre-treatment with methylene blue significantly en-

hanced the antianxiety effect of thymoquinone (10

and 20 mg/kg) in unstressed mice as compared with

those treated with thymoquinone (10 and 20 mg/kg)

alone. Methylene blue treatment also enhanced the

antianxiety effect of thymoquinone (10 and 20 mg/kg)

in stressed mice as compared with those treated with

thymoquinone alone (Fig. 1; Tabs. 1 and 2). Methyl-

ene blue alone could not produce any significant ef-

fect on anxiety of unstressed and stressed mice;

hence, these data are not shown.

Effect of thymoquinone and methylene blue

on plasma nitrite levels

Immobilization stress significantly increased plasma

nitrite levels in mice as compared with saline treated

unstressed mice. Corn oil did not significantly affect

the plasma nitrite levels in saline treated unstressed
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Tab. 2. Effect of different treatments on time spent by the mice during
the social interaction test

Treatment Dose (mg/kg) Percentage of time spent
in social interaction

Saline 10 ml 26.0 ± 0.75

Saline + Corn oil 10 + 10 ml 25.0 ± 0.77

IMMO 6 h 7.00 ± 0.36�

DZP (U) 2 58.0 ± 1.13�

DZP (S) 2 11.0 ± 1.2

TQ (U) 10 44.0 ± 1.03�

TQ (S) 10 9.20 ± 0.47

TQ (U) 20 62.0 ± 1.16�

TQ (S) 20 28.0 ± 1.10�

MB + TQ(U) 1 + 10 61.0 ± 1.18�

MB + TQ(S) 1 + 10 33.0 ± 0.68

MB + TQ(U) 1 + 20 76.0 ± 0.96�

MB + TQ(S) 1 + 20 44.0 ± 1.03�

Values expressed as the mean ± SEM, n = 6 in each group. Data were
analyzed by ANOVA followed by Tukey’s post-hoc test; F (12, 65) =
553.98; p < 0.0001, � p < 0.05; significant difference from vehicle-
treated control group (unstressed mice), � p < 0.05; significant differ-
ence from vehicle-treated control group (stressed mice), � p < 0.05;
significant difference from TQ (10 mg/kg)-treated unstressed mice,
� p < 0.05; significant difference from TQ (20 mg/kg)-treated un-
stressed mice, �p < 0.05; significant difference from TQ (20 mg/kg)-
treated stressed mice. Sal: Normal saline; CO: Corn oil; IMMO: immo-
bilization; DZP(U): diazepam (unstressed); DZP(S): diazepam
(stressed) TQ(U): thymoquinone (unstressed); TQ(S): thymoquinone
(stressed); MB: methylene blue

Tab. 1. Effect of different treatments on time spent by the mice in the
light compartment of the light/dark box

Treatment Dose (mg/kg) Percentage of time spent
in light compartment

Saline 10 ml 22.0 ± 1.5

Saline + Corn oil 10 + 10 ml 24.5 ± 2.3

IMMO 6 h 4.0 ± 0.32�

DZP (U) 2 65.0 ± 3.01�

DZP (S) 2 12.0 ± 2.2

TQ (U) 10 41.0 ± 2.6�

TQ (S) 10 14.0 ± 0.56

TQ (U) 20 57.0 ± 2.2�

TQ (S) 20 32.5 ± 0.65�

MB + TQ(U) 1 + 10 62.0 ± 0.73�

MB + TQ(S) 1 + 10 36.1 ± 0.65

MB + TQ(U) 1 + 20 74.0 ± 2.1�

MB + TQ(S) 1 + 20 58.0 ± 2.3�

Values expressed as the mean ± SEM, n = 6 in each group. Data were
analyzed by ANOVA followed by Tukey’s post-hoc test; F (12, 65) =
151.9; p < 0.0001, � p < 0.05; significant difference from vehicle
treated control group (unstressed mice), � p < 0.05; significant differ-
ence from vehicle-treated control group (stressed mice), � p < 0.05;
significant difference from TQ (10 mg/kg)-treated unstressed mice,
� p < 0.05; significant difference from TQ (20 mg/kg)-treated un-
stressed mice, � p < 0.05; significant difference from TQ (20 mg/kg)-
treated stressed mice. Sal: Normal saline; CO: Corn oil; IMMO: immo-
bilization; DZP(U): diazepam (unstressed); DZP(S): diazepam
(stressed) TQ(U): thymoquinone (unstressed); TQ(S): thymoquinone
(stressed); MB: methylene blue



mice. Diazepam did not have any effect on plasma ni-

trite levels in both unstressed and stressed mice. Thy-

moquinone (10 and 20 mg/kg) per se in unstressed

mice did not produce any change in basal plasma ni-

trite levels. However, the higher dose of thymoqui-

none (20 mg/kg) significantly attenuated the immobi-

lization-induced increase in plasma nitrite levels in

stressed mice. Pre-treatment with methylene blue did

not produce any significant change in the effect of

thymoquinone on plasma nitrite levels in unstressed

and stressed mice (Tab. 3). Methylene blue per se did

not produce any significant change in plasma nitrite

levels in unstressed and stressed mice; consequently,

these data are not shown.

Effect of thymoquinone and methylene blue on

brain GABA content

Brain GABA content was significantly lower in

stressed mice as compared with that in unstressed

mice. Corn oil did not significantly affect the brain

GABA levels in saline treated unstressed mice. Diaze-

pam enhanced the GABA content in unstressed and

stressed mice. The higher dose of thymoquinone (20

mg/kg) significantly increased the GABA content in

unstressed and stressed mice as compared with their

respective control groups. Methylene blue pretreat-

ment failed to bring about any further change in brain

GABA content in thymoquinone-treated stressed mice

(Tab. 4).

Effect of different treatments on locomotor

activity

Immobilization significantly decreased the locomotor

activity of mice as compared with saline treated un-

stressed mice. Thymoquinone (10 and 20 mg/kg) did

not significantly affect the spontaneous locomotor ac-

tivity in unstressed and stressed mice as compared to

vehicle-treated unstressed and stressed mice. Methyl-

ene blue treatment did not significantly alter the loco-

motor activity of thymoquinone-treated unstressed

and stressed mice (Tab. 5).
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Tab. 4. Effect of different treatments on brain GABA levels

Treatment Dose (mg/kg) Brain GABA levels
(µg/g of wet brain tissue)

Saline 10 ml 356 ± 3.38

Saline + Corn oil 10 + 10 ml 364 ± 3.85

IMMO 6 h 302.0 ± 4.0�

DZP (U) 2 426 ± 3.8�

DZP (S) 2 440 ± 4.8�

TQ (U) 10 372.0 ± 5.49

TQ (S) 10 312.0 ± 3.71

TQ (U) 20 410.0 ± 5.63�

TQ (S) 20 368.0 ± 5.26�

MB + TQ(U) 1 + 10 342.0 ± 4.73

MB + TQ(S) 1 + 10 314.0 ± 3.34

MB + TQ(U) 1 + 20 385 ± 4.73

MB + TQ(S) 1 + 20 378.0 ± 4.7

Values are expressed as the mean ± SEM, n = 6 in each group. Data
were analyzed by one-way ANOVA followed by Tukey’s post-hoc
test; F(12, 65) = 91.08; p < 0.0001, � p < 0.05; significant difference
from vehicle-treated control group (unstressed mice), � p < 0.05;
significant difference from stressed mice. Sal: Normal saline; CO:
Corn oil; IMMO: immobilization; DZP (U): diazepam (unstressed);
DZP(S): diazepam (stressed); TQ(U): thymoquinone (unstressed);
TQ(S): thymoquinone (stressed); MB: methylene blue

Tab. 3. Effect of different treatments on plasma nitrite levels

Treatment Dose (mg/kg) Plasma nitrite levels

Saline 10 ml 8.0 ± 0.51

Saline + Corn oil 10 + 10 ml 10.0 ± 0.8

IMMO 6 h 26.0 ± 1.0�

DZP (U) 2 12.0 ± 0.46

DZP (S) 2 24.6 ± 1.4

TQ (U) 10 11.0 ± 0.5

TQ (S) 10 23.0 ± 0.7

TQ (U) 20 12.0 ± 0.46

TQ (S) 20 14.0 ± 1.01�

MB + TQ(U) 1 + 10 13.0 ± 0.65

MB + TQ(S) 1 + 10 20.0 ± 1.7

MB + TQ(U) 1 + 20 9.0 ± 0.8

MB + TQ(S) 1 + 20 18.0 ± 0.6

Values are expressed as the mean ± SEM, n = 6 in each group. Data
were analyzed by ANOVA followed by Tukey’s post-hoc test; F (12, 65)
= 47.88; p < 0.0001, � p < 0.05; significant difference from vehicle-
treated control group (unstressed mice), � p < 0.05; significant differ-
ence from stressed mice. Sal: Normal saline; CO: Corn oil; DZP(U):
diazepam (unstressed); DZP(S): diazepam (stressed); IMMO: immo-
bilization; TQ(U): thymoquinone (unstressed); TQ(S): thymoquinone
(stressed); MB: methylene blue



Discussion

In the present study, thymoquinone at both doses ad-

ministered (10 and 20 mg/kg) showed significant anx-

iolytic activity in unstressed mice, but only the higher

dose (20 mg/kg) produced significant antianxiety ac-

tivity in stressed mice. Diazepam produced a signifi-

cant anxiolytic effect in unstressed mice, but the anti-

anxiety effect of diazepam was observed to be com-

promised in stressed mice. This is in agreement with

our recent report [17]. The anxiolytic effect of thymo-

quinone (20 mg/kg) was comparable to that of diaze-

pam (2 mg/kg) in unstressed mice. Furthermore,

methylene blue (1 mg/kg) potentiated the anxiolytic

effect of thymoquinone in unstressed and stressed mice

as compared with their respective control groups. The

antianxiety-like effect of thymoquinone and diazepam

seem not to be associated with any motor effects be-

cause these drugs did not significantly change locomo-

tor function of treated mice as compared to control

mice. This confirms the assumption that the antianxi-

ety-like effect of these drugs is specific.

Forced immobilization is one of the best explored

models of stress in rodents. This model combines emo-

tional stress (escape reaction) and physiological stress

(muscle work), resulting in both restricted mobility and

aggression. We have used physical immobilization for

6 h as a stressor in mice and found that stress-exposed

mice showed more anxious behavior as compared with

unstressed mice. This finding is in agreement with ear-

lier reports that acute (6 h) stress activates NOS and

enhances anxiety in rodents [17–19, 21, 48]. Acute im-

mobilization stress, as used in the present study, is re-

ported to increase expression of iNOS in the brain cor-

tex and leads to production of the stable nitric oxide

metabolites (nitrite and nitrate) in both plasma and

brain [35]. Furthermore, physical or psychological

stress-induced changes in the brain correlate with the

production of NO metabolites in both peripheral

(plasma) and central (brain) compartments [34].

In the present study, although diazepam (2 mg/kg)

served to increase brain GABA levels in both un-

stressed and stressed mice, it produced significant

anxiolytic effects in unstressed mice but was unable

to exert significant antianxiety effects under stressful

conditions. The observed lack of antianxiety effect of

diazepam in stressed mice may be adequately ex-

plained by two sets of observations: (a) the immobili-

zation stress-induced disturbances in GABAergic re-

ceptors and benzodiazepine coupling to these recep-

tors; and (b) the immobilization stress-induced strong

anxiogenic nitriergic influence and resultant NO-

cGMP enhanced endogenous anxiety accompanied by

decreased GABAergic influence. It is well known that

behavioral effects of drugs acting at the GABA-

benzodiazepine-barbiturate complex may vary be-

tween stressed and unstressed animals [6]. Further-

more, immobilization stress is accompanied by an in-

crease in the level of endogenous anxiety and induces

persistent changes in the GABA-benzodiazepine-

barbiturate complex in the brain of stressed animals

[60]. Immobilization stress for 6 h, as used in the

present study, has been shown to produce subsensitiv-

ity of central GABA receptors [51]. Similar results

have been reported with chronic mild restraint stress

that produces a decrease in benzodiazepine receptor

binding sites [40]. Moreover, immobilization stress

for 6 h has previously been reported to act as a nitrier-

gic stimulus and to enhance endogenous anxiety [17,

18, 35]. Furthermore, iNOS-derived NO activates an

endogenous NO-sensitive guanylyl cyclase, resulting

in increased levels of cGMP [3, 41]. There is evidence
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Tab. 5. Effect of different treatments on locomotor activity of mice

Treatment Dose (mg/kg) Locomotor activity counts

Saline 10 ml 345.2 ± 11.7

Saline + Corn oil 10 + 10 ml 338.4 ± 8.6

IMMO 6 h 138.4 ± 10.6�

DZP (U) 2 318 ± 7.2

DZP (S) 2 151.4 ± 6.8

TQ (U) 10 324.6 ± 14.4

TQ (S) 10 126.8 ± 12.1

TQ (U) 20 331.2 ± 14.2

TQ (S) 20 117.3 ± 9.3

MB+ TQ (U) 1 + 10 356.8 ± 13.1

MB + TQ (S) 1 + 10 135.1 ± 9.4

MB + TQ (U) 1 + 20 351.2 ± 11.6

MB + TQ (S) 1 + 20 131.4 ± 10.8

Values are expressed as the mean ± SEM, n = 6 in each group. Data
were analyzed by ANOVA followed by Tukey’s post-hoc test; F(12, 65)
= 94.26; p < 0.0001, �p < 0.05; significant difference from vehicle-
treated control group (unstressed mice). Sal: Normal saline; CO:
Corn oil; IMMO: immobilization; DZP (U): diazepam (unstressed);
DZP(S): diazepam (stressed); TQ(U): thymoquinone (unstressed);
TQ(S): thymoquinone (stressed); MB: methylene blue



suggesting that the role of the NO/cGMP signaling

pathway is the effect of NO on anxiety [12]. Inhibi-

tion of the nitric oxide–cGMP pathway by inhibition

of NOS has been reported to produce antianxiety ef-

fects [50]. The role of cGMP is also indicated by the

important observation in the hippocampus, an area in-

volved in anxiety, that cGMP may downregulate

GABA� receptor function and that NO-induced

cGMP synthesis induces hyperexcitability [16, 47].

Stress-restress-mediated glucocorticoid release acti-

vates iNOS, followed by a reactive downregulation of

hippocampal NMDA receptors and dysregulation of

inhibitory GABA pathways [24]. NO analogues have

been found to reduce GABA-gated currents via

cGMP-dependent pathways, which lead to anxiety

[61]. L-arginine (100 mg/kg, ip), an NO donor, has

been reported to abolish the anxiolytic-like effect of

diazepam (2 mg/kg, ip) [57]. Moreover, it has been

shown that benzodiazepine anxiolytics do not protect

against various emotional changes produced by stress

stimuli in mice [55]. Furthermore, diazepam has no

effect on NO under stressed conditions; as a result, the

effect of diazepam is suppressed under stressed condi-

tions. Therefore, the inability of diazepam to modify

the stress-induced increase in nitriergic influence may

be responsible for the compromised effect of diaze-

pam in stressed mice.

Prior to the present study, there was only one report

on the antianxiety activity of thymoquinone, suggest-

ing a partial involvement of benzodiazepine receptor

modulation [46]. This report pertains to the effect of

thymoquinone under unstressed conditions using ani-

mal model tests such as the head dip and Y-maze. In

the present study, we evaluated the involvement of ni-

triergic and GABAergic systems in the antianxiety ef-

fect of thymoquinone under both unstressed and

stressed conditions. The anxiolytic effect of thymo-

quinone observed in unstressed mice is in line with an

earlier report on the antianxiety effect of thymoqui-

none in unstressed mice [46]. Potentiation of the anx-

iolytic activity of thymoquinone by methylene blue

suggests the involvement of guanylate cyclase in the

antianxiety effect of thymoquinone. Methylene blue is

an inhibitor of a component of the NO signaling path-

way, i.e., guanylate cyclase [29]. Methylene blue (ad-

ministered at a dose of 7.5 mg/kg, intravenously in

rats) inactivated NO extracellularly through genera-

tion of superoxide anions and was found to produce

anxiolysis through the NOS-NO-cGMP pathway [12].

In the present study, methylene blue (1 mg/kg) per se

did not produce any significant effect on mouse be-

havior. The target of methylene blue, at the dose used

in the present study, is cGMP, a downstream effector

of NO [8]. Therefore, methylene blue did not have

any significant effect on NO. Hence, lower doses of

methylene blue (less than 7.5 mg/kg) did not exert

any significant antianxiety effect in unstressed and

stressed mice. Therefore, potentiation of the antianxi-

ety effect of thymoquinone by methylene blue sug-

gests the involvement of cGMP in the manifestation

of the antianxiety effect of thymoquinone in mice.

Thymoquinone (20 mg/kg) significantly attenuated

the immobilization-induced increase in plasma nitrite

levels and immobilization-induced decrease in GABA

content in stressed mice, suggesting that a decrease in

NO and increase in GABA may be responsible for the

antianxiety effect of thymoquinone in stressed mice.

In unstressed mice, thymoquinone (20 mg/kg)- and

diazepam (2 mg/kg)-induced increases in GABA are

accompanied by a significant anxiolytic effect, which

may further be attributed to the absence of a strong ni-

triergic influence in unstressed mice, as evident by the

insignificant change in plasma nitrite levels produced

by these drugs. The absence of nitriergic influence in

unstressed mice has also been demonstrated in other

reports [5, 19]. The observed pattern of behavioral

and biochemical effects of thymoquinone and diaze-

pam under unstressed and stressed conditions further

suggests that the nitriergic stimulus in stressed mice is

sufficient to disturb benzodiazepine-GABA receptor

function. These observations are strengthened by ear-

lier reports of disturbance in benzodiazepine-GABA

receptor function by stressful stimuli, including im-

mobilization [6, 60].

Thus, the inability of diazepam to show anxiolytic

effects under stressed conditions presented here show

a stress-induced disturbance in the GABA-benzo-

diazepine-barbiturate complex as well as strong nitri-

ergic influence, although the exact mechanism behind

this inability has yet to be explored fully. Further-

more, thymoquinone showed significant antianxiety-

like activity in mice through possible modulation of

NO and GABA.
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